Межфазное замыкание и способы борьбы с ним

Межфазное замыкание является аварийным режимом работы электрической сети. Оно возникает при электрическом соединении между разноименными фазами при ухудшении изоляции между ними, механических повреждениях или ошибках при эксплуатации.
Кроме межфазных замыканий различают однофазные замыкания, происходящие когда соединяются между собой ноль и фаза. Соединение фазного проводника с землей называется замыканием на землю.
Замыкания происходят в электроустановках, имеющих как заземленную нейтраль, когда нулевой проводник связан с контуром заземления, так и изолированную, где он изолирован от земли на всем протяжении. Они могут возникнуть между двумя фазами, тремя фазами с нулем или без него.
Замыкания могут возникать в любом месте электрической сети. Им подвержены:

  • опорные и проходные изоляторы, на которых устанавливаются токопроводящие шины;
  • обмотки электрических машин: силовых трансформаторов, электродвигателей и генераторов;
  • силовые кабельные линии;
  • воздушные линии электропередач;
  • изолирующие элементы коммутационной аппаратуры: выключатели, разъединители, рубильники, колодки предохранителей, автоматические выключатели;
  • потребители электрической энергии, например, электронагреватели, конденсаторные установки.

В различных ситуациях замыкания протекают по-разному. Различают:

  • «металлические» замыкания, при которых соединение проводников двух фаз имеет малое сопротивление, исключающее образование дуги и искр;
  • замыкание через дугу, образующееся в случае наличия между замкнутыми проводниками воздушного зазора;
  • «тлеющее» замыкание, характерное для кабельных линий, загрязненных изоляционных поверхностей, когда ток между фазами идет через участок с небольшим сопротивлением, разогревая его;
  • замыкание в полупроводниковых элементах при их пробое.

Для защиты от междуфазных замыканий в электроустановках 380/220 В применяются:

  • автоматические выключатели с электромагнитным расцепителем (автоматы);
  • плавкие предохранители.

Для защиты электроустановок с напряжением более 1000 В применяется комплекс устройств, называемый релейной защитой. Он включает в себя датчики тока (трансформаторы тока), напряжения (трансформаторы напряжения), реле защиты и управляемые силовые коммутационные элементы.
Реле защиты бывают электромеханическими, полупроводниковыми или микропроцессорными. Задача коммутационного элемента (масляного, вакуумного или элегазового выключателя) – обеспечить отключение поврежденного участка по команде от устройства защиты. При этом он должен выдержать отключение тока короткого замыкания.

Токи межфазного замыкания

Важной электрической характеристикой короткого замыкания является его ток. При проектировании электроустановок его обязательно рассчитывают по определенной методике для нескольких точек. Делается это для того, чтобы правильно выбрать параметры электрооборудования и установки защитных устройств: токи отсечки автоматических выключателей и характеристики срабатывания релейной защиты.
На величину тока короткого замыкания (КЗ) оказывают влияние следующие факторы:

  1. Расстояние от точки замыкания до источников электроэнергии. Чем ближе замыкание от мощных трансформаторов, генераторов, тем ток замыкания больше;
  2. Вид, сечение и протяженность соединительных кабельных и воздушных линий, соединяющих источник питания с точкой КЗ. Количество и характеристики коммутационных аппаратов в этой цепи и их техническое состояние. При расчете все эти данные преобразуют в эквивалентное сопротивление сети. Зная мощность источника электроэнергии, рассчитывают ток КЗ;
  3. Вид межфазного замыкания: при металлическом замыкании ток наибольший, его и рассчитывают при проектировании. При дуговом замыкании ток меньше. Но если дуга неустойчива и постоянно то гаснет, то загорается вновь, возникают переходные процессы, приводящие к кратковременному превышению расчетных токов.

При «тлеющем» замыкании ток намного ниже расчетного, что делает невозможным реакцию защитных устройств на его появление. Тлеющее замыкание может внезапно перейти в дуговое или металлическое, сработает защита, но при повторном включении ток снова окажется за порогом чувствительности. Поиск места повреждения электрооборудования в данном случае затруднен и без измерения изоляции или испытаний повышенным напряжением невозможен.

Итак, чем дальше замыкание происходит от источника питания, тем меньше величина его тока. Объясняется это тем, что каждый кабель, распределительный щиток или воздушная линия увеличивают величину эквивалентного сопротивления электрической сети. По закону Ома при увеличении сопротивления нагрузки ток в цепи уменьшается.

Это позволяет реализовать селективное отключение поврежденных участков электрической сети. Автоматический выключатель на вводе в квартиру при номинальном токе 16 А и характеристикой «С» имеет ток срабатывания электромагнитного расцепителя 80 – 160 А. Ток замыкания, превышающий 160 А гарантированно приведет к его отключению. Но тока короткого замыкания в квартире вряд ли хватит для отключения выключателя на трансформаторной подстанции, питающей весь дом, отключающегося при 500А. И его даже не заметит защита кабельной линии, питающей подстанцию.

Воздействие межфазного замыкания на электрооборудование и людей

Когда возникают межфазовые замыкания, они разрушают электрооборудование или срывают режим его работы. При прохождении тока замыкания по токоведущим частям они одновременно испытывают динамическое и термическое воздействия.

Динамическое воздействие возникает при очень больших токах, в основном это имеет значение на мощных подстанциях, электростанциях и линиях электропередач энергосистемы. Связано это с тем, что проводники с током, расположенные на некотором расстоянии друг относительно друга, в зависимости от направления этих токов либо притягиваются, либо отталкиваются. Сила этого взаимодействия прямо пропорциональна величине токов и обратно пропорциональна расстоянию между ними.

При мощных авариях шины распределительных устройств взаимодействуют между собой с такой силой, что ломаются изоляторы, на которых они установлены. Обмотки электрических машин вырывает из пазов, а кабели извиваются, как змеи. Поломки токопроводов могут привести к возникновению дополнительных замкнутых участков, что делает аварийную ситуацию глобальней.

При проектировании все электрооборудование обязательно проверяют на то, чтобы оно выдержало ток КЗ без разрушения. У каждого электроаппарата есть заявленный в паспорте производителем ток динамической устойчивости, который должен быть больше расчетного тока КЗ.

Термическое воздействие заключается в нагреве проводников в процессе прохождения токов КЗ. Они превращаются в нагревательные элементы, на которых выделяется тепло. Мощность, выделяемая коротким замыканием на участке цепи пропорциональна его сопротивлению, помноженному на квадрат тока.

Все выпускаемое электрооборудование имеет помимо паспортной величины динамической устойчивости еще термическую устойчивость. Она тоже должна проверяться по расчетным параметрам КЗ, в которые дополнительно входит еще и время воздействия.

Когда в квартире возникает межфазное замыкание, бытовые автоматические выключатели срабатывают почти мгновенно. А вот время отключения защитных аппаратов в распределительных устройствах не может быть равно нулю. Тогда они могут срабатывать группами, что приведет к массовым отключениям и затруднению поисков поврежденных участков. Чем ближе к потребителю защитный аппарат, тем меньше время его срабатывания. Вышестоящий аппарат является его резервом, он сработает при токе КЗ, если нижестоящий его не отключит. Но время работы у него чуточку больше.

На участках, защищаемых аппаратами с выдержкой времени существует больше шансов, что шины или провода при КЗ будут расплавлены. Но и при мгновенном отключении разогреться оборудование успевает очень сильно.

Еще одним фактором воздействия межфазного замыкания на электрооборудование и людей является электрическая дуга. Она разогревает поверхности, с которыми соприкасается, до нескольких тысяч градусов. При таких температурах плавятся все использующиеся в электротехнике металлы. За время срабатывания защит порой выгорает несколько метров шин, пережигаются пополам кабельные линии.

Электрическая дуга выделяет тепло и в окружающее пространство. При наличии рядом горючих материалов может произойти пожар. Загореться может иизоляция кабелей и трансформаторное масло, использующееся в электроаппаратах для охлаждения или гашения дуги при коммутации.

Если рядом находятся люди, они могут пострадать или от ожогов сетчатки глаза из-за ослепляющего воздействия дуги, или получить другие ожоги. Такие ожоги трудно вылечить, так как они сопровождаются металлизацией: во все стороны летят брызги расплавленного металла. Осложнения возникают при загорании одежды на пострадавшем, которая вспыхивает мгновенно.

Поэтому при работе в действующих электроустановках безопасности уделяется особое внимание. Попасть под действие электрической дуги можно только при ошибках при выполнении переключений, подготовке рабочего места или нарушении технологии производства работ. Оказаться в месте, где замыкание возникло само по себе из-за пробоя изоляции, на практике нереально.

При КЗ напряжение в точке его возникновения существенно снижается. Происходит это в силу того же закона Ома: напряжение на участке цепи пропорционально току через него и его сопротивлению. Поскольку сопротивление в месте КЗ намного ниже, чем во всей остальной цепи до источника питания, то каким бы большим не был ток, напряжение все равно резко уменьшится. Это приводит к дополнительным проблемам: в остальной части электроустановки отпадают пускатели электродвигателей, сбоят электронные устройства, системы компьютерного управления. Поэтому на важных энергетических объектах системы управления и контроля за работой электрооборудования питаются от независимого источника электроэнергии (аккумуляторной батареи), а компьютерные системы обязательно имеют ИБП.

Профилактика межфазных замыканий

Частота возникновения КЗ в любых электроустановках зависит от следующих факторов:

  • возраста эксплуатируемого электрооборудования;
  • своевременности и качества выполнения планово-предупредительных ремонтов (ППР);
  • соблюдения режимов работы электрооборудования;
  • квалификации обслуживающего персонала.

На предприятиях всегда ведется статистический анализ всех аварийных отключений. На основании его делаются выводы, позволяющие предотвратить возникновение похожих инцидентов. Кроме того, каждое предприятие имеет собственный план модернизации электрооборудования, предусматривающий замену старых, физически и морально устаревших устройств на новые, современные.

 
12345
 Загрузка... Загрузка...
3549
Комментарии

К данной статье еще нет комментариев

Оставить комментарий