Разработка из России поможет выявить болезни головного мозга
Новый математический метод обработки данных о состоянии головного мозга разработали ученые БФУ им. И. Канта и Университета Иннополис. По их словам, предложенный подход позволит быстро диагностировать неврологические проблемы без утомительных для пациентов испытаний. Результаты опубликованы в журнале Chaos, Solitons & Fractals.
Точная диагностика проблем головного мозга с помощью электроэнцефалографии (ЭЭГ), по словам ученых, сегодня, как правило, требует длительных тестов, которые могут быть затруднительны для людей пожилого возраста.
Ученые Балтийского федерального университета им. И. Канта в составе научной группы разработали новый подход к обработке показателей ЭЭГ, который позволяет проводить точную диагностику даже на основе небольшого объема данных.
Сотрудники Балтийского центра нейротехнологий и искусственного интеллекта за работой
Балтийский центр нейротехнологий и искусственного интеллектаСотрудники Балтийского центра нейротехнологий и искусственного интеллекта за работойБалтийский центр нейротехнологий и искусственного интеллекта
По словам ученых, предложенный метод представляет собой вариацию вейвлет-анализа — математического подхода, позволяющего изучать различные частотные компоненты данных во временном распределении.
"Вейвлет-анализ — мощное средство диагностики поведения живых систем, включая мозг человека, требующий, однако, довольно большого массива данных, то есть длительных разнообразных тестов. В медицине же часто необходимо соблюдать ограничения на нагрузку пациентов, особенно когда мы имеем дело с пожилыми людьми".
Александр Храмовруководитель лаборатории нейронауки и когнитивных технологий университета Иннополис, главный научный сотрудник Балтийского центра нейротехнологий и искусственного интеллекта
По его словам, исследователи работали с двумя группами взрослых добровольцев молодого и пожилого возраста, регистрируя сигналы ЭЭГ при выполнении задач на мелкую моторику. Ограничив себя этими данными, ученые усовершенствовали алгоритм обработки так, чтобы получить эффективный результат.
«Мы предложили использовать новый метод — кумулянтный анализ в вейвлет-пространстве. Для диагностики мы используем параметры двумерных распределений высокого порядка, асимметрию и эксцесс. Анализ ограниченных данных новым методом повысил точность и детализацию описания процессов старения в нейронах головного мозга, связанных с моторной функцией», — рассказал Храмов.
Полученные в ходе исследования данные о возрастной динамике изменений нейронов, как полагают ученые, могут выступать также маркерами некоторых неврологических заболеваний.
Исследование проводилось совместно со специалистами Университета Иннополис и Саратовского государственного университета. На следующем этапе авторы исследования намерены разработать методы ранней диагностики нейродегенеративных заболеваний у пожилых людей по результатам простых тестов.
Исследование ведется в рамках стратегического проекта БФУ им. И. Канта «Когнитивное долголетие» при поддержке программы Минобрнауки России «Приоритет 2030» (нацпроект «Наука и университеты»).